展示No 区分 ■部品 □素材/材料 □設備/装置 □金型/治工具 □システム/ソフトウェア □その他()							
02-1 提案名 工法 新規性 ・ 立人成形 世界初							
会社名	大	塚ポリテック(株)	所在地 埼玉県比企郡滑川町羽尾4962				
<mark>連絡先</mark> 部署名:営業部				URL: http://www.poly-tech.co.jp/ Tel No.: 0493-56-5002			
担当名:中村 達人				E-mail: tatsuto_nakamura@poly-tech.co.jp			
主要取引先 ・本田技研工業㈱ ・㈱本田技術研究所・㈱アイシン				海外対応		海外抄	
・(株)デンソー・	·日立Astemo	技術研究所・㈱アイジノ O㈱ ・三菱電機㈱・㈱や 車㈱ ・㈱山田製作所 e	■可	口否	■ ² 有	有 口無 (国名フィリピン) 中 <mark>国</mark>	
<< 提案内容 >>							
提案の狙い 原価低減 軽量化 生産(作業	注)性向上	□ 品質/性能向上 □ 安全/環境対策 ■ その他(新技術提案)	適用可能な製車載(インパワーモジ各種モータ	バータ/車載用充電器 _{ジュール} ・ ター	バッテリ	ンバータ) ーモジュール
		従来	新技術·新工法				
ロシート形状のみ (設計自由度なし)				□ 設計自由度向上 (金型成形により相手形状に合わせた形状設計可)			
□ 熱伝導	率:0.8~	□ 熱伝導率: 2.7 W/m·K (硬度A63) 1.0 W/m·K (硬度A30)					
■ 従来品(放熱シート)				熱伝導率は従来シート材と同等で立体形状可			
	項目 材質 熱伝導率 W/m·K 硬度A	M社 SS社 シリコーン アクリル 3 3 12 30 90 1	K社 EPDM 0.8 40		(型成形品) 参考) 金型成形品	1	
ヒートシンク / 【従来放熱シート貼付】 Coil(発熱体						才·型成刑	《品ASSY】
※ コスト高 (材質:シリコーン、ACM主流) ※ コスト低減 (木						M)	
※ 粘着付与(タック性)により組付作業性難 ※ 粘着付与(タック性)により密着性向上				※ 粘着性なく組付作業性良好、易解体性※ 熱負荷により軟化して相手部品への密着性向上			
セールスポイント(製造可能な精度/材質等) 問題点(課題)と対応方法							_
① 設計自由度向上 (金型成形可) ・ 低硬さ(低反力)と高熱伝導率の共存 ② 従来放熱シートと同等の熱伝導率を有する ・ (形状設計含めて材料開発継続中)							子
③ 材料費低減 (対従来シート)							
④ 組付性良好・易解体性(粘着無および設計自由度)⑤ 高温雰囲気下では軟化して相手部品への密着性向上							
開発進度 (2024 年 6 月 現在) パテント有無							
	ロ アイデア	製品化完了(改	文良継続中)		出願済		
	項目	コスト	Ē	羟量化	生産/作業性	20	D他()
従来との比較	数値割合	(25%低減)		-	25%低減		_