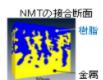
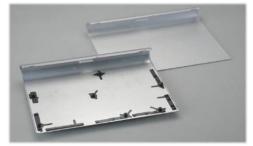
展示No区分	■部品 □素材/材料 □設備/装置 ■金	金型/治工具	□システム/ソフトウ	エア □その)他()
03-1	提案名 車載におけるマルチマテリアル化			<mark>_</mark> &下処理	<mark>新規性</mark> 世界初
会社名	大成プラス株式会社	所在地 東京都中央区日本橋小伝馬町11-9住友生命日本橋小伝馬町ビル			
連絡先 部署名:営業	推進部	URL: https://taiseiplas.com Tel No.: 03(6661)2422			
担当名:津吹	7 紀之	E-mail: n. tsubuki@taiseiplas.com			
主要取引先 豊田紡織、シュ リケンNPRほか	 マノ、リンナイ、大日本印刷、双葉電子工業 け	海外対応□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□	■否	<u>海外拠</u> ■ 4 有(


<< 提案内容 >>

提案の狙い □ 原価低減 □ 品質/性能向上 ■ 軽量化 □ 安全/環境対策/CN対応 □ 生産(作業)性向上 □ その他() □ 生産(作業)性方と □ その他() □ またのせん() □ またのものでは、・金属へのナノエッチング下地処理 新技術・新工法

[Nano Molding Technology]

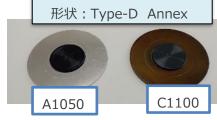

「金属×樹脂」の接合 NMTのご紹介

金属表面を薬液で微細で複雑な穴を閉け、インサート成形 することでアンカー効果を生かし一体化する技術です。 樹脂/金属の接合による一体化で、今までのものづくりとは 異なる特殊形状・剛性・気密・熱移動・軽量化などが 設計の利点として生まれます。

・工程の簡略化

□個々にバーツを作成し、一体化する作業か必要

・気密性の向上


□高い環境性能が必要な場合は、高価な封止材など が必要となる □インサート成形により、1工程で一体化が可能

□ナノレベルの凹凸に樹脂が入り込むことで、 気密性や防水性能を実現

□標準状態

金属	樹脂	BG (Pa·m³/s)	漏洩量(Pa·㎡/s)			
A1050	PPS	7.0×10 ⁻⁸	7.2×10 ⁻⁸			
C1100	PPS	1.6×10 ⁻⁸	5.4×10 ⁻⁸			

セールスポーイント(製造可能な精度/材質等)

・金属(AL、SUS、Ti、Cu)+樹脂に ケミカルナノエッチング処理後インサート成形をする 事により軽量化、熱移動の向上、気密性を持つ パイブリッド部品を構成する事が可能です。

問題点(課題)と対応方法

- 樹脂側は結晶性の樹脂(PPS、PBT、PA、PP)に 限ります。

・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・								
開発進度(パテント有無							
·	有り							
	項目	コスト	軽量化	生産/作業性	その他(気密特性)			
従来との比較	数値割合	Δ	©	Δ	©			