展示No 区分 ■部品 □素材/材料 □設備/装置 □金型/治工具 □システム/ソフトウエア □その他()	
11-2 提案名 理想ダイオードMF2003SVの使用による損失低減 工法 新規性 日本初	
新電元工業(株)	<mark>所在地</mark> 埼玉県朝霞市幸町3-14-1
連絡先 部署名:営業本部マーケティング部販売促進課 担当名:神坂 賢輔	URL: https://www.shindengen.co.jp/ Tel No.: 080-2280-9630 E-mail: kamisaka@shindengen.co.jp
主要取引先	海外対応 海外拠点
国内大手tear1	■有 □無 ■可 □否 有(国名)
<< 提案内容 >>	
提案の狙い	適用可能な製品/分野 る 各種ECU
	新技術・新工法
①逆接逆流保護デバイスとして SBD(ショットキーバリアダイオード)を使用	①SBDでなく PchMOS+Drivを1PKG化
②導通損失が大きい(従来SBD使用時)	②導通損失を55%低減【図1】
③温度上昇が激しい(従来SBD使用時)	③温度上昇を37%低減【図2】 【図1】損失比較 【図2】発熱比較
④実装面積が大きい(従来SBD使用時)	***********************************
	【図3】実装面積比較 MF2003SV D15FR4ST 定情: 40V/15A 定情: 40V/15A 定情: 40V/15A 度的バッケージ FR/でタージ (TO-252AA類似) (SC-83類似) 実験面積・80%down 実験面積・90%down
⑤電圧降下が起こりやすい(従来SBD使用時)	⑤電圧降下を38%低減
⑥内蔵PchMOSFETのブレークダウンが 起こる可能性がある	⑥ΔVDS≒40V程度の アクティブクランプ機能を掲載
セールスポイント(製造可能な精度/材質等) 損失55%低減 温度37%低減	問題点(課題)と対応方法 特になし
<mark>開発進度</mark> (2024 年 8 月 現在)	パテント有無
□ アイデア, □ 試作/実験, □ 開発完了, ■ 製品化完了 有(第6827112号)	
項目 コスト (従来との比較) またたから	軽量化 生産/作業性 その他()
数値割合	80%減(実装面積) — — — — —